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ABSTRACT

The probability of an individual's participation in a recreation activity has been modelled
as a linear combination of socio-economic variables, or traits. Such models are calibrated by
using as the dependent variable a binary observation of whether each individual did or did not
participate in the activity.

The R2 statistic for these models is shown to be dependent only on the statistical
relationship between probability and binary observation. R2 in no way indicates the validity of
the model. Estimates of coefficients are unbiased but, when OLS is used, standard errors in
coefficients are overestimated (note that using GLS resulting in lower standard error is a topic of
the Smith and Cicchetti appendix to this CORDS volume).

An alternative index of structural error influence is proposed and its use is demonstrated
by simulation.
BACKGROUND

CORDS TN 6, 12, 13 20, and 29 examined the use of regression with dummy variables
(also called analysis of variance in CORDS) as a method of modelling participation in recreation
activities. Briefly, it was argued that in order to project demand for a given activity in a
community, a model must incorporate shifting socioeconomic patterns. Rising incomes and
aspirations create changes in leisure habits which in turn are reflected in varying patterns of
demand for both indoor and outdoor activities.

The model proposed characterizes an individual by a bundle of socioeconomic variables,
and postulates that some combination of these determines the probability of participation in a
given activity by that individual:
p= a0 +Σi ai xi+ e i=1 to m
WHEREεis an error term, to be discussed below, a0 and the ai is a vector of constants,
xi is the value of the ith socioeconomic variable, and m is the number of such variables.

In many cases the values of x i will be restricted to 1 or 0, corresponding to the
individual's possession of the ith socioeconomic trait, or his lack of it, respectively. TN 12 uses
the terminology of analysis of variance, since all socioeconomic variables are considered as
binary traits by allocating a dummy variable to indicate presence or absence of a level of an
attribute (e.g., being in a given age range is a variable). The terms and symbols used in this paper
are those of multiple regression. This is done since many of the conclusions apply equally to
independent variables measured on continuous scales. The Time Series Processor (TSP) was
used for all simulations, in conjunction with small FORTRAN routines being used for data
generation and post-TSP analysis.

To predict and project participation levels in a community as a whole, the model is simply
summed over the members of the community;
E(n) =Σp i,j

=Σj a0 + Σj Σi ai xi,j+Σej = Na0+Σaini + έj=1 to N and i=1 to m
WHERE E(n) is the expected number of participants,

N is the population of the community,
n i is the population having the ith trait (e.g., a level of some variable), and
j specifies a single individual.

TN 12 illustrates the calibration of the model against the results of a survey with data on



individual participation, and the use of the model in projecting recreation demand. The present
paper examines a series of problems in the use of the model, and in the interpretation of the
results, concentrating on the disappointingly low R2 values, or measures of the model's fit to
reality, that are customarily obtained.
THE BASIS OF THE PROBLEM

In calibrating the model, the dependent variable is not an observation of the probability p
that an individual will participate, but an observation of the individual's actual behaviour. If the
individual was observed to participate, the dependent variable is given the value of 1, and if not,
0. The relationship between this dichotomous variable and the probability p, is statistical: the
probability that a 1 will be observed in a single trial is p, and that a 0 will be observed, l-p.

The effect of calibrating with the dichotomous variable, which will be referred to as y,

rather than p, can be thought of as the addition of another error term to the model. The
conventional error in p, which was introduced in Equation 1 as e, will be referred to as structural
error, while the second source introduced by using y as the dependent variable will be called
statistical error. While structural error is an empirical quantity, statistical error should be
predictable (e reflects how much the model is in error for predicting an individuals true
probability—it is a correction to an imperfect fit of a general model to individuals).

Suppose that structural error is absent, so that the entire error in the model is due to the
statistical component. Consider a very large sample, and let the distribution of p values be such
that the probability of finding a case in the interval p to p + dp is f(p)dp. Since p must lie in the
range 0 to 1 it must be true that:
∫f(p)dp)= 1
WHERE the integration is from 0 to 1.
The probability of observing y to be 1 is p, and 0, 1-p. With a sample of N, the expected number
of observations for which y = 1 will be Npf(p)dp, and for y = 0; N(1-p)f(p)dp. So the observed
sum of squared deviations between y's and p's, or between observed and predicted values of the
dependent variable, will be: Nf(p) p(1-p)dp
The total sum of squares for all such intervals will be:∫Nf(p) p(1-p)dp (integrating from 0 to 1)
which is thus the sum of squares of y's about p's.
The total sum of squares for the dependent variable y about its own mean is:
∫Npf(p)dp-(∫Npf(p)dp)2/N (integrating from 0 to 1)
Thus the value of R2 that will be observed in the absence of structural error has an expected
value of:
(k2 - k12)/(k1 – k12) WHERE k1 = ∫pf(p)dp and k2 = ∫p2f(p)dp
(integrating from 0 to 1)

So the asymptotic value of R2 due to the statistical error component can be predicted from
the first and second moments of the distribution of p. Consider a simple example. Suppose that
the model predicts only two values of p. 0 and 1. That is, under certain socioeconomic
conditions, individuals will certainly participate, and under all other conditions will certainly not.

Suppose that the probability of either condition occurring is 1/2.
Then k1 = 1 * 1/2 + 0 * 1/2 = 1/2

k2 = 12 x 1/2 + 02 x 1/2 = 1/2
R2 = 1

Since p is restricted to 0 and 1, the y's must be respectively 0 and 1, there is no statistical error,
and the fit is perfect.



Now let the two equally likely combinations of independent attributes give rise to p values of 1/3
and 2/3. This time statistical error is present, and R2 deteriorates dramatically;
k1 = 1/2; k2 = 5/18; R2 = 1/9

The foregoing discussion is of course limited to the asymptotic case. In principle, it is
possible to calculate the distribution of R2 for samples of limited size, but the tractability of the
problem will depend very much on the distribution of p, and therefore on the empirical xi and ai.
For this reason the developments which follow are based on simulation of a few realistic cases,
rather than on general mathematical analysis.
NATURE OF THE STRUCTURAL ERROR TERM

Many factors influence the likelihood of an individual's participation in an activity besides
the socio economic traits xi included in the model. These include the effects of varying levels of
the supply of opportunities for recreation (see TN 29), of the individual's own learning process,
and of attitudes and perceptions. Furthermore, the model may not include interaction effects
between two or more traits. Thus, it may be assumed that education is uniformly influential as a
trait regardless of the presence or absence of other traits. But education may take part in
interactive effects with other factors. If, for example, university education affects a certain
participation probability only when coupled with high income, its influence will go undetected
and appear in the error term, along with any other such interaction effects, or may actually distort
the model. The point has been dealt with in detail in TN 20.

It is possible, then, to conceive of a variety of models for the error term in Equation 1. For
one type of error, see the Cicchetti and Smith in an appendix to this volume. Error might be
simulated as an interaction effect by taking a certain value when both of two interacting traits are
present, and zero otherwise. The error term due to supply and learning factors might be
appropriately modelled by the conventional regression error term, an independent, normally
distributed variate of zero mean. The latter approach was taken in the simulations which follow.

While the range of empirical p values is clearly restricted to between 0 and 1, there is no
explicit requirement that the coefficients of the model be selected so that all predicted values of p
lie in that range. In simulation experiments, it is quite likely that p will be driven above 1 or
below 0 by the addition of large error terms.

In calibrating the model in other CORD studies this problem has been dealt with by the
use of a modified regression procedure which restricts predicted p values to the prescribed range.
In these simulations the range has been restricted by truncating any error which would otherwise
have driven a p value above 1 or below 0. But in the long term, the problem would be better dealt
with by a respecification of the model. Suppose that Equation 1 were to become:
p = (1/Π) arctan (a0+Σaix(i)+έ)+1/2

Then the limits p = 0 and p = 1 would become asymptotes such that even the most
favourable or unfavourable combinations of trait variables never quite result in inevitable
behaviour, and no restrictions are placed on the values of the ai. Calibration of the specified
model is more difficult, because in the appropriate linearized form all values of the dependent
variables y become ± infinity. But it would be quite possible to calibrate the model in the non-
linear form given above by an appropriate iterative procedure.
SIMULATIONS (1)

The simulations were made with a set of nine independent, binary socioeconomic trait
variables. Each one was simulated by generating a uniformly distributed random number in the
interval 0 to 1, and then rounding to an integer, so that in each case the probability of the trait
being present was 1/2.



p values were calculated from Equation 1. The έvalues were normally distributed with
mean 0 and with standard deviationσ, determined for each simulation, so that the amount of
structural error could be varied freely. The method of Box and Muller (1958) was used to
generate normally distributed deviates from pairs of random numbers in the interval 0 to 1.

y values were generated from the p’s according to the value of a further uniformly
distributed random number in the interval 0 to 1. If this number was greater than p, y was set to
0, and otherwise to 1.

The first set of simulations demonstrates the dependence of R2 on statistical error when
structural error is absent. The results are shown in Table 1. In each case the fitted vector of
coefficients was compared to the original set used to calculate p values. The deviations were
expressed in standard errors, and the table shows the mean absolute deviation and the standard
deviation of the coefficient deviation, for each run. According to standard regression
assumptions, the expected values are 0.798 and 1.0 respectively.

The distribution-of p, and the moments kl and k2 are readily calculated, since p is the sum
of the constant a0, and nine equally weighted binomial variates x1 – x9. The probability that
exactly r of these variates have the value 1 and the rest 0 is given by the binomial distribution:
(n!/r!(n-r)!)pr(1-p)n-r

WHERE n is the number of binomial variates, and
p is the probability that any one has the value 1.
The mean of the distribution is simply np, and the variance np(1-p) so that:

k1 = 9 x 1/2 x 0.1 + 0.1 = 0.55
k2 – kl2 = 9 x 1/2 x 1/2 x 0.1 x 0.1 x 0.1 = 0.0222
R2 = 0.0222/(O.55 - 0.552) = 0.0898

This is the asymptotic value of R2, to which the values in the table tend as sample size
increases.
THE STRUCTURAL COMPONENT

The structural error component can now be reintroduced. Each individual value of p is
distorted by a random quantity e, which is assumed to have a Normal distribution with a mean 0
and standard deviation σ.

When structural errors are included, the sum of squares about the regression line becomes:

∑(y-p)2 = ∫(1-p)2 N(p+e) f(p)dp+∫p2N(1-p-e)f(p)dp
=∫N f(p) (p+e-p2-2pe)dp

(integrating from 0 to 1)
Since only linear terms in e appear in the result, it follows that for moderate values of the

Σthe existence of structural error will have no effect on R2 . The proportion of variance explained
by the model will be a function of statistical error alone, and will not reflect any structural
deficiencies in the analysis.

In the second set of simulations the statistical influence was held constant, and the amount
of structural error varied by changing the standard deviation of e. The prediction that R2 would
remain constant for moderate values ofσis borne out by Table 2. The two measures based on a
comparison of the fitted coefficients with the original simulation values show a quite systematic
deterioration in the model's ability to recover coefficients as structural error increases. However,
there is no such systematic effect on R2 , which remains significant at the 95% level on the
standard test and is as close to the asymptotic value of 0.0898 when σ= 1 as it is when σ= O.
The inevitable conclusion is that low R2 values are a result of the nature of the dependent



variable and do not necessarily indicate any structural weakness in the model.
It is clear from Table 1 that the statistical error component behaves in a similar manner to

the error in a standard regression model. The two measures of coefficient recovery remain
adequately close to their expected values. However structural error behaves rather differently.
Increasing values ofΣcause a deterioration in the coefficient measures, but without a
corresponding change in R2. The result is that the coefficient measures show a trend to values that are
well outside the expected range under standard regression assumptions. In short, the standard error of a
regression coefficient can be calculated by the standard methods when statistical error is present, but
increasing structural error results in increasing underestimation.
FURTHER ANALYSIS

The analysis thus far has raised two major points. First, the success of the model as
expressed in Equation 1 cannot possibly be assessed by means of R2. Second, measures of the
standard error in regression coefficients are biased when structural and statistical error are both
present. So consider here that the preceding analysis is pursued in more formal terms leading to
the discussion of steps that can be taken to rectify the two difficulties just cited.
The fundamental problem can be expressed quite succinctly in terms of the ability of the y values
to give accurate estimates of the properties of the p values. Taking the mean first, we have:
ŷ=∫P(y=l|p) P(p)dp = ∫pP(p)dp = p̂
Thus the mean of y is an unbiased estimate of the mean of p. Now consider the second moment
of y.
∫P(y=1|p) P(p)dp = p̂
Thus the second moment of y is not an estimate of the second moment of p. It follows that
measures based on the sum of squares of p, such as R2 , the standard error of regression
coefficients, or statistical tests of the significance of R2, will be distorted when y is used as the
dependent variable.

TABLE 1: STRUCTURAL ERROR ABSENT ( Σ= 0)
Sample

Size
R2 Mean Absolute

Error in a
Standard Deviation of

Error in a
20 .4832 .943 1.048
50 .2711 .459 .610

100 .1085 .423 .611
200 .0863 1.01 1.216
500 .1236 1.07 1.277

TABLE 2: VARYING STRUCTURAL ERROR
Sample
Size (N)

Σ R2 Mean Absolute
Error in a

Standard Deviation
of Error in a

200 0 .0986 .490 .600
200 .1 .1586 .784 .971
200 .5 .0528 .927 1.147
200 1.0 .0831 1.730 2.059

Now the crossproduct of y with an independent variable:
∫∫xi P(xi)dxi P(y=1|p) P(p)dp

=∫∫xi P(xi)dxipP(p)dp



which is the crossproduct of p and xi. So the regression coefficient estimates, which are based on
the covariances and the variances of the xi, will be unbiased.

Stated in these terms, the problems stem from the impossibility of estimating the variance
in values of p. When structural error is assumed absent, the variance is simply that of the fitted p
values, so no problem arises, but actual p values may be distorted by the unknown component e.
A NEW MEASURE OF STRUCTURAL ERROR

The only possible means of assessing the amount of structural error in the model is by a
comparison of the actual and fitted p values. While the observed y values reflect the actual, but
unknown p values, they do so only in a statistical sense. In a complex problem, each individual
probably possesses a unique combination of independent variable values, or socioeconomic
traits, and thus a unique p value. Thus each y value represents a single trial of a unique
experiment. (See the review of this chapter for a different comparison method than the one
presented here based on the GLS regression methods described in the Cicchetti and Smith
appendix to this volume.)

Suppose that the fitted p values were grouped into ranges, say 0 - 0.1, 0.1 - 0.2, etc. Then
in the absence of structural error, the proportion of those individuals whose fitted p values lay in
each range should be roughly equal to the central p value of each range. Thus approximately 5%
of those individuals with a fitted p value in the first range should be observed to participate in the
activity. The precise number will be governed by the binomial distribution so that the probability
that precisely r individuals will participate is:
P( r ) = (( n-r )!/r!)P( c )r (1-P( c ))( n-r ) WHERE the central p value is P(c), and n individuals
have p values in the range.

Unfortunately, if we assume that structural error distorts p values in a normal distribution
with a mean of 0, then the proportion of individuals will remain roughly the same, irrespective of
the amount of structural error present, since upward distortions in p are as likely as downward
distortions. However, it is clear that towards the limits of 0 and 1, the normal distribution is not a
reasonable model of structural error, since near 0 upward distortions must be more likely, and
conversely near 1. This suggests, then, that the deviations in observed proportions from the
central p values in each range, particularly near 0 and 1 may be a reasonable measure of
structural error.

These ideas are now clarified with an example. Figure 1 shows the distribution of fitted p
values for the simulation run s = 0, N = 200, that is, a sample of 200 generated with no structural
error. Figure 2 shows the distribution of numbers of participants by fitted p value, so that each
bar represents the number of individuals who participated, and who had fitted p values in that
range. Table 3 shows the corresponding proportions.

The reliability of each observed proportion depends on the p value count in that interval.
Clearly values toward the middle of the table are based on larger samples and should thus be
given greater weight. In view of this, a better strategy might be to organize the distribution into
intervals of equal numbers of observations. Table 4 shows the same distribution in the form of
the ten deciles, so that each interval contains precisely 20 observations of fitted p values.

The proposed structural error index S(2) is based on the fit of observed proportions to
central p values, when the data is arranged by deciles, weighted by the expected reliability of
each proportion in a modified R2 statistic:

Σi (si-xi)2/(x i-xi
2)

S2 =1- Σi (si-0.5)2 /(x i-xi
2)

WHERE s i = observed proportion in the ith decile and x(i) is the central p value, and i=1 to 10.



TABLE 3: FITTED p DISTRIBUTION
Central p p Value Count Participant Count Proportion Standard Error

.05 1 1 1.0 .22

.15 8 4 .5* .13

.25 15 0 0 .11

.35 31 13 .42 .09

.45 37 16 .43 .08

.55 42 16 .38 .08

.65 34 28 .82 .08

.75 23 18 .78 .09

.85 8 6 .75 .13

.95 1 1 1.0 .22
* Probability of observing a value at least this different from the central p is less than 5%.

TABLE 4
FITTED p DISTRIBUTION BY DECILES

Central p
p Value
Count

Participant
Count Proportion

Std
Error

.151 20 8 .40* .08

.333 20 4 .20 .11

.386 20 5 .25 .11

.431 20 12 .60 .11

.470 20 6 .30 .11

.506 20 11 .55 .11

.553 20 10 .50 .11

.610 20 10 .50 .11

.668 20 16 .80 .11

.802 20 17 .85 .09
* Probability of observing a value at least this different from the central p is less than 5%.

Table 5 shows the computed values for the index for the conditions used in Table 2. Each
experiment was repeated 25 times, and the table shows the observed mean and standard error of
S2.

The index shows the expected trend. The upper limit of the scale, corresponding to Σ= 0,
depends on the sample size and will approach 1 as the sample increases and observed
proportions become more accurate estimates of central p values.
SUMMARY

This paper has been concerned with models which relate an individual's socioeconomic
characteristics or traits to the probability of his participating in specific recreation activities. Such
models are calibrated by using as the dependent variable a binary representation of the
individual's actual behaviour, which is only statistically related to the model probability.

Under these conditions, the R2 statistic is determined by the statistical relationship
between probability and binary event, and in no way reflects the model's actual goodness of fit,
or its structural error. Estimates of regression coefficients are unbiased, but since the binary
event variable cannot give an estimate of the variance of the probability variable, R2 and related
statistics are of questionable value.



TABLE 5 EFFECT OF VARYING ΣON S2 (N = 200)
Σ Mean S2 Standard Error
0 .782 .120
.1 .766 .147
.5 .599 .222
1.0 .616 .187
2.O .271 .310

If each individual must be assumed to have a unique socioeconomic mix, then each event
is a trial under a different probability, and measurement of errors in those probabilities is
extremely difficult. The method suggested is a measure of the goodness of fit between
probabilities and proportions of events when observations are grouped into ranges of
probabilities. It is argued that structural error will produce distortions in this fit towards the ends
of the probability spectrum at 0 and B.

Simulations were used to demonstrate the proposed index. They show the expected
behaviour under increasing amounts of structural error. Standard errors are quite large, and the
expected values of the index depend on sample size, on the form of structural error, and also on
the parameters of the model, so that the index should be used only as a relative scale and not as
an absolute measure. It would be wise to simulate the expected values of the index under the
specific conditions of each application.

Should the model be applied to cases where numbers of individuals have the same
socioeconomic characteristics, many of the problems are much less severe. Calibration can be
carried out using observed proportions as the dependent variable rather than binary events. The
reliability of each proportion depends on the number of individuals involved, so that the data
should be weighted accordingly. The problem has been discussed in the context of recreation
flow models in TN No. 19, and many of the conclusions of that paper can be applied to the
participation modelling problem.


